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If the angles 0ij are related by symmetry, e.g. as in a 
kernel, co-kernel or averaged configuration, it may be 
simpler to use the explicit relations between the angles: 

C3v(xxx): 2 cos (023 +/~) = 3 cos2(0,2 + t~) -  1 

D2d(X): cos(012 + t) + 2 COS(013 -t- ~) = --1  

D2: cos (012 + t0 + c0s(013 -t- ~) q- cos (014 -~- ~ ) =  - 1  

C2v(x): 4 COS2(013 -t- ~) = [1 + cos (012 + e)] 

× [ 1 + cos  (034 + t)] 

C2(x): [cos(O,3 + e) + cos (0,0 + e)]2 
=[1  + cos(Ol2 --[- e)][1 + c0s(034 + ~)] 

C2(xyy): 2[c0s2(013 + e) + COS2(023 + C ) - - 2  COS (012 + e) 

X COS (013 + ~)COS (023 + e)] 
= sin2(O12 + t)[1 + cos  (034 + e)]. 
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Deformations of PO 4, SO a and mlCl 4 fragments observed in crystals are analysed in terms of symmetry 
coordinates and internal coordinates. Various correlations among individual components of the total 
deformation are described and used to derive features of the potential-energy hypersurface of tetrahedrai MX 4 
fragments. Some of the observed correlations for all three systems can be described by a common numerical 
function based on the Pauling bond-number concept. 

1. General background 

Many M X  a molecules that are known or expected to 
show T a symmetry as isolated particles deviate from 
this symmetry in crystal environments. The observed 
distortions have been related to models of 
intramolecular bonding (McDonald & Cruickshank, 
1967; Bartell, Su & Yow, 1970; Lager & Gibbs, 1973) 
as well as to the influence of the crystal environment 

(McGinnety, 1972). The interdependence of bond- 
length and bond-angle variations has been studied 
empirically by Baur (1970, 1974) and by Brown & 
Shannon (1973). 

In this paper we adopt a different point of  view. Our 
premise is that any correlation found among indepen- 
dent parameters defining the structure of a given 
fragment, e.g. M X  a, in a variety of environments maps 
a region of low potential energy on the corresponding 
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energy hypersurface. As shown previously (Biirgi, 
1973; B/irgi, Dunitz & Shefter, 1973, 1974; Muetterties 
& Guggenberger, 1974; Holmes & Deiters, 1977), this 
kind of approach can provide information about details 
of chemical reaction paths. A preliminary account of 
some results o n  M S  4 molecules has appeared (Murray- 
Rust, B/irgi & Dunitz, 1975, hereinafter MBD 1). 

In searching for structural correlations we can 
simply examine the usual internal coordinates (e .g .  

bond lengths, angles) describing the fragments. 
However, if we choose to regard the fragments in 
question as distorted versions of  symmetrical reference 
structures, there are advantages in using symmetry 
coordinates instead. 

2. Symmetry coordinates 

Any distortion of a non-linear molecule of N atoms 
from a specified reference geometry can be represented 
by a (3 N -  6)-dimensional distortion vector D = d i pg = 

[dt(obs) - d i ( r e f ) l P i  which, in general, transforms as 
a reducible representation of the point group of the 
reference molecule with structural parameters d~(ref). 
Methods for decomposing such a vector into compo- 
nents that transform as irreducible representations, i.e. 

components D~ along symmetry coordinates S~, are well 
known and are discussed in detail in the preceding 
paper (Murray-Rust, B/irgi & Dunitz, 1978; hereinafter 
MBD 2) for the special case of M X  4 molecules with T a 

reference symmetry. 
For convenience, these components are listed below: 

DI(A]) =½(r,  + r 2 + r 3 + r 4 -  4ro) 

with r 0 = r(ref) and (% = 109.47 °. The bond lengths 
transform as A l + T 2, the bond angles as E + T 2, with 
an additional redundant coordinate (the sum of the 
angles) transforming as A 1. 

3. Analysis of distorted PO 4 fragments in terms of 
symmetry coordinates 

Our analysis of distorted P O  4 fragments is based on 
Baur's (1974) compilation• For each of the 211 PO 4 
fragments listed by Baur, the components of the 
distortion vector along symmetry coordinates were 
evaluated. For self-consistency, we label the O atoms 
(tetrahedral vertices) such that r~ _> r 2 _> r 3 _> r4; this 
implies that D3a >_ D3b >_ D3c and that the first two 
components are positive. However, the above labelling 
convention for the vertices does not impose any 
restriction on the components of the angle deformation 
vectors D 2 and D 4. 

The data were searched for possible trends or 
correlations among the symmetry-coordinate compo- 
nents of the deformation vectors D. Fig. 1 shows the 
distribution of the product I D31.  I D41 against cos ~ = 
D3.D4/ID31 .ID41, where ~, is the angle between the 
vectors D 3 and D 4. It is evident that large products tend 
to be associated with ~ angles close to 180 ° (cos ~ = 
-1) .  In other words, if both vectors are large, there is a 
correlation between their directions; the two vectors 
tend to be antiparallel, so that --D 4 and D 3 tend to lie in 
corresponding regions of their respective deformation 
spaces. 

Fig. 2 shows the distribution of D3a against D4a. 
According to our labelling convention, D3~ is the largest 

D 3 a ( T z )  = ½(r ,  + r 2 - -  r 3 - -  r4) 

D30(T2) = ½ ( r , -  r 2 + r 3 - r4) 

D 3 c ( T 2 )  = ½(r  I - -  r 2 - -  r 3 + r 4) 

1 

D 2 a ( E )  = ~-~(2cq2 -- oh3 - -  a 1 4  - -  (}~23 - -  a 2 4  J r  2(234 ) 

D2b(E) ---- ½ ( C ~ 1 3  - -  ( ~ 1 4  - -  0 " 2 3  J r  ( t 2 4 )  

D 4 a ( T 2 )  = ~-~ (ala--a34) 

l 
D4b(T2) = ~ - ~  ( ( t 1 3 -  (124) 

1 
D4c(T2) : ~ ((t14 - - i t 2 3 )  

1 
Ds(AI) = ~ ( ( / 1 2  J r  ( t 1 3  J r  ( t 1 4  J r  (t23 J r  ( t 2 4  J r  i t34-  6%) 

Vo  
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Fig. 1. Distribution of cos ~, -- D3.DJID31.11)41 against 
ID31. ID41. The numbers denote frequency of  incidence, single 
incidence being denoted by an asterisk. 
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component of  D 3 in the chosen coordinate system; D4a 
is not necessarily the largest component of  D 4, but, 
because of  the correlation shown in Fig. 1, it will tend 
to be so. It is seen from Fig. 2 that the correlation 
between O3a and Daa is essentially linear [D3a(/~) = 
- -0 .0091 D4a(°)] and highly significant (R = - 0 . 9 6 ) .  

Linear regression treats one variable (Daa) as 
dependent and the other (D4~) as independent. In order 
to avoid the arbitrariness involved in choosing depen- 
dent and independent variables, the principal axes of  
inertia (eigenvectors) were calculated for a distribution 
containing the points of  Fig. 2 and those generated by 
inversion across the origin. The larger eigenvector 
(to be compared with the regression line) is along 
Daa (/k)------0.0094 D4a (o). 

We can interpret the observed linear interdependence 
of  Daa and D4, as a manifestation of  a non-zero cross- 
term k34 in the quadratic approximation to the 
corresponding part of  the potential energy expression 

2 V =  k33D]a + k44024a + 2k34D3aD44. (1) 

The potential constants k33 and k44 are positive• If k34 is 
also positive, 2 V is larger in the first quadrant than in 
the second, and our premise would then imply that 
distortions along --t-S3a should be associated with 
distortions along - S 4 , ,  as actually observed (Fig. 2). 
We conclude therefore that k34 is positive• We can even 
proceed a little further since, according to our premise, 
the slope of  the eigenvector D3a/D4a = g ~ - -0 .0094  ,/k 
deg -~ can be identified with the direction of minimal 
energy increase, the major axis of the set of ellipses, 
V = constant. 

By symmetry, D3a and D4a in (1) may be replaced by 
D3t , and D4b or by Dac and D4c, the potential constants 
being invariant to the choice of  axes. It follows that (1) 
may be rewritten in terms of the actual deformation 
vectors: 

2 V =  k33iD312 + k441D412 + 2k34 D3.D 4 (1') 

so that the observed correlation between major compo- 
nents of the vectors must also hold approximately for 
the vectors themselves. 

In  contrast to the linear correlation between D3a(T2) 
and Daa(T2) (Fig.  2), the distribution of D~(A~) against 
ID2(E)I  (Fig .  3) shows that these two quantities are 
essentially uncorrelated. This distribution is c o m -  
pa t ib le  with a potential-energy expression 

2 V  = kll D2 + k22 IO212 (2) 

involving only squared terms• Since the two coordinates 
here transform as different irreducible representations 
and the potential energy must be invariant to 
any symmetry transformation, the cross-term 
kI2Dn(AI)ID2(E)I has to disappear, i.e. k,2 has to be 
identically zero .  In  the same way, cross-terms between 
all pairs of  coordinates transforming as different 
irreducible representations must also be zero as long as 
the quadratic approximation for the potential energy 
holds. 

F o r  large deformations from the T a reference 
symmetry, the quadratic approximation cannot be 
expected to hold. Although there can be no linear 
correlation between deformation components t r ans -  
f o r m i n g  as different irreducible representations, higher- 
order correlations are not excluded and indeed are to be 
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expected in some cases. For example, a large bond- 
length deformation along S3a(T2)  would have to be 
coupled to a deformation along S,tAt) to prevent 
undue shortening of two of the M - - X  bonds. From the 
scatter plot of D ~ against I D31 (Fig. 4) it is seen that for 
small I D31 the points scatter about the line D, = 3.07 A, 
but, as I D31 increases, they tend to lie above this line. In 
place of a linear correlation we have an approximately 
quadratic one, D~ ~ 3.07 ,~ + hiD312 with h ~ 1.21 
A -l. A quadratic correlation of this kind would 
correspond to a cubic c r o s s - t e r m  k t 3 3 D l l D 3 1 2  in the 
appropriate part of the potential energy expression. The 
distribution of ID2(E)I against ID4(T2)I is more 
difficult to interpret, but it shows that for nearly 90% of 
the MX4 fragments IO4(7"2)1 > I D2(E)I. 

Similarly, for large distortions the potential energy in 
each of the two T 2 subspaces can no longer be expected 
to be spherically symmetrical, although it must still be 
totally symmetric with respect to the symmetry 
operations of T a. Thus, for example, although equal 
and opposite deformations along S3. or S4a have the 
same energy since they correspond to isometric 
structures, equal and opposite deformations along Sa., 
or S4a, correspond to non-isometric structures with 
different energies [see MBD 2 for definitions of primed 
coordinates and recall that a distortion along +S3., 
corresponds to a C3. distortion with the unique bond 
stretched (r 0, whereas distortion along --Sad,, corre- 
sponds to a C3. distortion with the unique bond 
contracted (r4)]. 

As will be discussed below, most of the M X  4 
fragments that show large distortions retain approxi- 
mate C2. or Ca. symmetry. This means that the analysis 
of large deformations is essentially limited to the 
description of paths that run along particular directions 
in the nine-dimensional deformation space. These paths 
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Fig. 4. Distr ibution of  D~ against  ID31. [Quadrat ic  regression: D,  
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may correspond to channels or tunnels in the potential- 
energy hypersurface, which would again require the 
introduction of higher than quadratic terms. It is clear 
that large deformations imply strong perturbation of 
the M S  4 fragment by the crystal environment, and we 
shall return to this point in § 7. 

The examples discussed in this section suffice to 
demonstrate that decomposition of the total defor- 
mation vector into components along symmetry coor- 
dinates can be helpful in the search for correlations 
among the deformation parameters. The analysis of the 
deformations observed in different structures can be 
based on preconceptions about the symmetry proper- 
ties of the potential-energy hypersurface, and, conver- 
sely, any correlations that are found can be interpreted 
in terms of particular features of this hypersurface. 

4. PO 4 fragments with approximate C2v or C3v 
symmetry 

Another advantage of the symmetry-coordinate 
analysis is that it provides quantitative expression to the 
concept of approximate symmetry. An example is given 
in MBD 2. For an M X  4 fragment with exact  C2,, 
symmetry, the D 3 and D4 distortion vectors can have 
non-zero components only along S3a and Sna, respec- 
tively, in our coordinate system. We define a fragment 
as having a p p r o x i m a t e  C2v symmetry if D~ lies within 
20 ° of Saa. Similarly, we define a fragment as having 
approximate Car symmetry if the D 3 v e c t o r  lies within 
20 ° of S3,,, or -S3a, , .  We find that approximate C2,. or 
C3v symmetry, as defined above, is displayed by most 
of the PO 4 fragments showing large distortions. In 
order to simplify the analysis of M X  4 fragments with 
approximate symmetry, we consider only the compo- 
nents of the total deformation vector along the 
symmetry coordinates that preserve the subsymmetry 
tn question. Such a projection of the deformation vector 
corresponds to an averaging over the internal coordi- 
nates that are required to be equal for exact symmetry. 
There is no problem about averaging the bond 
distances; however, since the six angles are not 
independent, straightforward averaging of them may 
lead to a structure that is unfeasible in three dimen- 
sions. Ways of circumventing this difficulty are 
mentioned in MBD 2 (§ 4.3). For M X  4 fragments 
retaining C2~ symmetry, the deformation space has four 
dimensions. In symmetry coordinates, these are S](A ]), 
S 2 a ( E ) ,  S 3 a ( T 2 )  and S a a ( T 2 ) ;  in  internals, they are r(],2 ), 
r(3,4), 1112 and 1134. For M X  4 fragments retaining C3. 
symmetry, the deformation space has only three 
dimensions: S,(A ,), S3.,, (T z) and S4~,, (T z) in symmetry 
coordinates, and r~, r(z,3,4 ) and 11112,13,14) in internals. In 
both cases, the remaining angles are dependent vari- 
ables (see MBD 2 Appendix for the relevant trigono- 
metric relations). 
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For the C2~ case, the transformations between 
components along internal and symmetry coordinates 
are: 

(r, + r z -  2ro)/2 = <6r>x,2 = ½(D 1 + D30 ) 

(r3 + ra - 2ro)/2 = (&)3.a = ½ ( O 1 -  O3a) 

1 1 (3) 
( " 1 2  - -  ( /0) = C~ ('12 = ' ~ O 2 a + - ' ~ O 4  a 

1 1 
( 0 " 3 4  - -  O "  O )  = ( ~ 3 4  = ~ D 2 a - - ~  D4a 

Va Vz 

assuming ~ 6a u = 0. The gradual admixture of  D ~  to 
D4a is apparent in Fig. 5, which shows the distribution 
of  a]~ against a34 for 91 P O  4 fragments with approxi- 
mate C2, symmetry• This distribution, which is sym- 
metric about the line ,12 = %4, shows a detectable 
deviation from the linearity that would hold if Dza were 
zero everywhere. The slope of  the curve at a]2 = %4 = 
109•47 ° is fixed by symmetry and equals - 1 .  In order 
to estimate the curvature, we have chosen to calculate 
the regression 

(O:12 + a 3 4 ) / V 2  = A  + B ( a l 2  - -  a ~ 4 ) z / 2 .  

The linear combinations of  a's in this expression are 1 5 ,  

respectively symmetric and antisymmetric across the 
I 5 6  

mirror line ( h 2 = a 3 v  For a regular tetrahedron, 
A = 154.82 °, and by regression we find 154 

A = 155 .0 (3 )  ° , B = 0 . 0 0 7  (2) deg -~. The observed 
curvature agrees with that expected from the relation 

COS (t12 + COS (t34 = 3 cos  al2 c o s  Q(34 - -  1 
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derived from a simple sp3-hybridization model. It also 
agrees with the simpler ad hoc assumption, 
COS ( t ]2  + COS (134 - - 2  

- -  3 "  

Similarly, the distribution of  <r>],2,  the mean of  r, 
and r 2, against (r)3.4 shows the admixture of  D 1 when 
the difference between these two quantities becomes 
large. Fig. 6 contains the distributions of (r)i,j against 
included angle a u (bottom) and opposite angle akt (top). 
It contains all the information needed to construct the 
correlation curve in the corresponding four-dimensional 
deformation space. For example, given (r)~,2, we can 
determine a,2 from one plot and a34 from the other, 
whence (r )3 ,4  may be read from either plot. 

The main trend observed in the distributions shown 
in Fig. 6 may be expressed in terms of  a linear 
correlation between (6r)~.2 and the included and 
opposite angles. The slopes of  these lines can be derived 
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from (3) by considering only the T 2 part of the 
total deformation vector, i.e. by assuming DI(AI) = 
Dz,,(E) = 0. Under these conditions 

(4) 
D3a = 2 <6r>1.2 , 

D4~ = V/2 6 al 2. 

We have already found a linear correlation, 
D3a = gO4a , with g ~ -0 .0094  A deg-L It follows that 

_ g 
<6r>,,z - V/2 6,h2. (5) 

The result is general; it holds for any two bonds and the 
angle between them and is the basis of the correlation 
found by Baur (1974) between the mean length of a 
pair of P - O  bonds and the included O - P - O  angle. 
There is, of course, an analogous relation between the 
mean length of a pair of P - O  bonds and the opposite 
O - P - O  angle: 

- g  
(6r>].2 - k/,2 6 ,s , .  (6) 

The slope obtained from the 91 structures with 
approximate C2~ symmetry (Fig. 6) is 0.0062 A deg -~, 
to be compared with the value g / k / 2  = 0.0066 A deg -1 
from the O3a/D4a correlation (Fig. 2) based on the 
complete data. 

For large distortions from T a symmetry, the linearity 
of the relations between bond lengths and angles breaks 
down. Because of the non-quadratic nature of the 
potential-energy function, the T 2 type deformations 
should become increasingly mixed with A 1 and E type 
deformations. The expected deviations from linearity 
are just discernible in the experimental distributions of 
Fig. 6. 

For the C3~ case, the transformations between 
components along internal and symmetry coordinates 
are, for the unique bond length, the averaged bond 
length, and the averaged angle: 

r a - -  r o = 6 r  I = {(D 1 + v/3D3a ,) 

{ ( r  2 + r 3 + r 4 - -  3ro) = <r>2,3,4 - -  r o = 6 r  2 

1 ( D ] -  1 = ~ ~ D3a, ) (7) 

{(%2 + a13 + %4 - 3%) = < a > 1 2 , 1 3 , 1 4  - (3('0 

1 
= 6 a =  ~--~ D4a, 

again assuming 7" 6 %  = 0. The distributions shown in 
Fig. 7 are based on 68 structures with approximate Car 
symmetry from Baur's list. 

In the linear region close to T a symmetry, the 
increase in 6r, is three times the decrease in 6r2, as 
expected from (7) when D, is negligible. The observed 
slope d(rr , ) /d(6(0 is - 0 . 0 1 8  A deg -1, to be compared 
with the value - 3 g / v ~ 2  = - 0 . 0 2 0  A deg -1 when g is 
obtained from the D3a/Daa correlation. For larger 
distortions the component along S 1 becomes appreci- 
able, and this should produce a positive curvature in the 
6r,/6(~ and the 6r2/6(~ scatter plots• This feature is 
hardly discernible in the distributions of Fig. 7, but it 
becomes more evident in the corresponding distri- 
butions for SO4 and A1C14 fragments to be discussed 
later• 

The separate analyses of PO a fragments retaining 
approximate C2v and C3v symmetry not only serve to 
delineate tunnels or channels in the potential energy 
surface but also allow us to test the validity of an 
assumption implicit in (1'), namely, that the quadratic 
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potential is independent  of  the individual directions of  
D 3 and D 4 and depends only on the angle between 
them. I f  this assumpt ion  were correct ,  g [and hence 
k34/ (k33-k44  )] would have to be the same for 
distortion vectors with components  D3a, D4a (C2~ 
symmet ry )  as for vectors with components  D3a,,, D4a,, 
(C3v symmetry) .  The close agreement  of  observed 
slopes d(6r)/d(6a) for PO 4 f ragments  retaining approxi-  
mate  C2, or C3v symmet ry  with the slopes derived from 
g thus confirms the approximate  validity of  the 
assumpt ion of  a spherically symmetr ic ,  quadra t ic  
potential for small distortions. 

5. SO 4 and AICI 4 fragments 

So far  our analysis  has been limited to P04  fragments ,  
and the question arises to what  extent our conclusions 
are also valid for other te t rahedral  M X  4 systems.  
Unfor tunate ly ,  Baur 's  exhaustive compilat ion is restric- 
ted to phosphates .  For  other  systems we have confined 
our analysis to a somewha t  a rb i t ra ry  selection of  da ta  
culled from the literature. F r o m  our point of  view the 

most  interesting M X  4 systems are SO 4 and AlE14 
f ragments  because,  for some of these, distortions along 
the C3v channel  ultimately lead to stable products  
(stable at  least in a crystal  environment) :  namely  
SO 3 + 0 2- f rom SO ] -  and A1CI 3 + C1- from AIC14. 
Correla t ions  derived from experimental  distributions 
for these sys tems could thus serve to delineate reaction 
pa thways  for ligand dissociation. With this in mind we 
have gathered da ta  for 26 SO 4 f ragments  and for SO 3 
(Table 1) as well as for 17 A1CI 4 f ragments  and for 
AICI 3 (Table 2), all of  which show at least approximate  
('3v symmetry .  The da ta  have been selected f rom 
various sources:  (a) SO 3 and AICI 3 from gas-phase  
electron diffraction investigations, (b) SO4 and AIC14 
f ragments  f rom the BIDICS  1969-72  bibl iography of  
inorganic crystal  s t ructures  (Brown, 1969). The selec- 
tion has been guided by the following criteria: (c) 
Inclusion of  f ragments  if 16rll < 0 .05  A (approximate  
T a symmet ry)  or  0 .05  < I~rll <_ 0.15 ,/k and differences 
among  r 2, r3, r 4 smaller than 3 a  or I t~rll > 0.15 
(approximate  C3, symmetry) .  (d) Exclusion of  strvc- 
tures with disorder or large thermal motion in the M X  4 
fragment.  (e) Exclusion of  inaccurate  structures l a ( r )  > 
0 .02  AI.  

Table 1. Struetural parameters for  S04fragments with approximate C3v symmetry 

Compound r I (r)2.3,4 (ct) ,2, la. 14 Reference 

K2S5016 1.403/k 1.526/~ 112.1 ° l 
FeNH4(SO4) 2. 3H20 1.434 1.478 111.5 2 
CuIC3H 10N21SO4. H20 1.440 1-477 109.9 3 
ZnIC (NH2) 312(SO4) 2 1.440 1-470 110.4 4 
N H4LiSO 4 1.450 1.468 109.7 5 
Zn(C 6H ioN 304)(H 20)4(SO4) i/2 1-455 1.455 109-0 6 
(CgHI3N)2. H2SO 4 1.455 1-474 110.3 2 
SnSO 4 1-457 1-497 111.3 7 
K2SO 4 1 "459 1-472 109" 7 8 
[ (N H3)4Co(N H 2,O H)Co(N H 3)4 ] (SO4)2 • 2H20 1 "460 1-469 109-2 9 
NaAI(SO4) 2. 12H20 1.461 1.459 110.1 10 
BeSO 4. 4H20 1.464 1.464 109-5 11 
(C 5H6N50)2504. H20 1.466 1.474 109.6 12 
[(NH3)4Co(NH2,OH)Co(NH3)4 ](SO4)2.2H20 1.472 1.469 109. I 9 
Cu(NH4)2(SO4) 2. 6H20 1.475 1-471 109.2 13 
(H 502)2SO 4 1.479 1-479 109.5 14 
(C9H 13N)EH 2SO4 1.480 1.437 108.3 15 

1.490 1.463 109.0 15 
N2H6504 1.491 1.473 108.7 16 
(C 5HTNsO)2SO 4 1.494 1.461 108.4 17 
[en2Co (N H 2,SO4)Co en 2 ] Br 3 1.502 1.456 108.9 18 
NH4HSO 4 1.549 1.430 105.5 19 

1-557 1.445 106.0 19 
C9H i tNO2SO 4 . 2H20 1.611 1.442 104.6 20 
K 2S5016 1-668 1.450 103.6 1 

1.826 1.419 100.2 1 
SO3(g ) cx9 1.418 90 21 

References: (1) de Vries & Mijlhoff (1969). (2) Palmer, Wong & Lee (1972). (3) Morosin & Howatson (1970). (4) Morimoto & 
Lingafelter (1970). (5) Dollase (1969). (6)van der Helm & Nicholas (1970). (7)Donaldson & Puxley (1972). (8)McGinnety (1972). (9) 
Schaeffer & Lighty (1972). (10) Kay & Cromer (1970). (11) Sikka & Chidambaram (1969). (12) Subramanian & Marsh (1971). (13) 
Brown & Chidambaram (1969). (14) Kj~illman & Olovsson (1972). (15) Bergin & Carlstr6m (1971). (16) J6nsson & Hamilton (1970). (17) 
Prusiner & Sundaralingam (1972). (18) Thewalt (1971). (19) Nelmes (1971). (20) Fries & Sundaralingam (1971). (21) Clark & Beagley 
(1971). 
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The appropriate  bond lengths and angles were 
averaged to produce structures with Car symmetry .  
Results  are given in Tables  1 and 2, which serve as a 
basis for the distr ibutions shown in Figs. 8 and 9. These 
distributions show larger deviat ions from T d symmet ry  
than the corresponding PO 4 distr ibution (Fig. 7), but 
apar t  from that ,  all three distr ibutions are very similar. 
In part icular ,  the observed slopes d ( S r l ) / d ( S a )  in the 
linear region close to T a geometry  are pract ical ly equal 
for AIC14, SO 4 and PO 4, in spite of the differences in 
mean bond lengths. I f  the three distr ibutions are given 
in terms of  fir = r - r o, i.e. if they are referred to a 
common origin, the sample points appear  to be d rawn  
from a single population.  The points for p lanar  AICI 3 
and SO 3 lie close to the smooth curves shown. 

6. Description of correlations by analytical functions 

We first assume that  for all points along the 
correlat ion curve, n~ + 3n 2 = 4. We  then need a relat ion 
between bond number  and bond angle and we have 
chosen n~ = 9 cos 2 a, n 2 = ] -- 3 COS 2(I ,* where a s tands 
for (a)12,13,14. This  satisfies the desired condit ions (1) 
n~ = 1 for a = 1 0 9 . 4 7 ° ;  (2) n~ = 0 for o = 9 0 ° ;  (3) 
d(Sr2)/d(Srt) = 0 for t~ = 90 o. Note,  however,  tha t  for 
st > 131-8 ° n 2 becomes zero and hence r 2 becomes 
infinite. The expected asymptot ic  behaviour  of  fir 2 = 
- c  log (4 - 3  cos 2 st) can be discerned in the experimen- 
tal distr ibution for YSnCI 3 f ragments  ( M B D  1). 

* The quadratic dependence of n on cos a also happens to give 
better agreement between observed and calculated C - O  distances 
in our study of the nucleophilic addition of amine N to carbonyl 
than the linear dependence assumed in Bfirgi, Dunitz & Shefter 
(1973). 

The smooth  curves shown in Figs. 8 and 9 are not  jus t  
correlat ion curves of  arbi t rary  form drawn to fit the 
data  as well as possible. Rather ,  they represent  an 
a t tempt  to reproduce the observed general  t rends in 
terms of  a simple model of chemical  bonding based on 
Pauling 's  (1947) relation between bond length and 
bond number;  

5r  i = r i - -  R = - -c  log n i (8) 

where R is the single-bond length, taken here as r 0. 

Table 2. S t r u c t u r a l  p a r a m e t e r s  f o r  AIC14 f r a g m e n t s  

w i t h  a p p r o x i m a t e  C3v s y m m e t r y  

Ref- 
Compound rl (r)2.3,4 (S't) 12,13,14 erence 

Ses(AIC14) 2 2.07 A 2.143/~ 111.7 ° 1 
C6H6. U. (AIC14) 3 2-07 2.167 114.3 2 
C6H6" CuAIC14 2-078 2. 143 110.7 3 
TeC13. A1CI 4 2.087 2.142 110.7 4 
SeC13.A1C14 2.09 2.137 110.9 5 
Te 4. (AICi4) 2 2.093 2.130 111.1 6 
(CH3)7C6. A1C14 2.105 2.125 109.5 7 
CH3CO.A1CI 4 2.120 2.127 110-4 8 
C6H 6. AgA1CI a 2.15 2.13 109- 3 9 
SeC13. A1CI 4 2-17 2.13 109.1 5 
(Pd. C6H6.AICI4) 2 2.18 2.113 107.4 10 
Hg3. (A1C14) 2 2.181 2.115 107.4 11 

2.185 2.123 106.4 
Te 4. (A12C17) 2 2.222 2.103 105-6 6 
(Pd. C6H 6 . AI2CI7) 2 2.25 2.097 105.7 10 
Te a. (A12C17) 2 2.262 2-102 104.6 6 
(Pd.C6H6.AI2C17) 2 2.28 2-097 103.3 10 
A1CI3(g) oo 2.06 90 12 

References: (1) McMullan, Prince & Corbett (1971). (2) Cesari, 
Pedretti, Zazzetta, Lugli & Marconi (1971). (3)Turner & Amma 
(1966a). (4) Krebs, Buss & Altona (1971). (5) Stock-Blaisse & 
Romers (1971). (6) Couch, Lokken & Corbett (1972). (7)Baenziger 
& Nelson (1968). (8) Le Carpentier & Weiss (1972). (9) Turner & 
Amma (1966b). (10) Allegra, Tettamanti Casagrande, Immirzi, 
Porri & VituUi (1970). (11) Ellison, Levy & Fung (1972). (12) 
Zasorin & Rambidi (1967). 
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Fig. 8. Distributions of r~ against (a)~2.~3.14 (black circles)and of 
(r)2,3.4 against (a)~2,13,14 (white circles) for SO 4 fragments with 
approximate C3v symmetry. (Not all points in the neighbourhood 
of (~ -~ 109.5 ° are shown. The smooth curves are discussed in the 
text.) 
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Fig. 9. As Fig. 8, but for A1CI 4 fragments (all points shown). 
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We have determined the numerical constants r 0 and c 
in the Pauling relation for PO4, SO 4 and mlCl 4 
fragments separately by minimizing 

{Jr I (obs) - r I (talc)] 2 + 3[ (/'>2,3,4 (obs) 

- (r)2.3.4 (calc)]2 }/a 2 (9) 

where tr is the average e.s.d, quoted for ri; the factor 3 
is introduced because (r)2,3,4 (obs) is the mean of three 
observations. The r~ terms for the two planar structures 
SO 3 and AICI 3 were set equal to zero. The linear least- 
squares minimization leads to: 

r 0 = 2.125 A, c = 0.49 A for A1CI 4 
1.534 0.47 PO 4 
1.472 0.51 S O  4 

The near equality of c for the three groups conforms 
with our earlier comment that the sample points, 
referred to a common origin, appear to be drawn from 
a single population. A c value of 0.50 ]k has been found 
(MBD 1) to reproduce the main trends in the 
corresponding distributions for many Y M X  3 and non- 
planar M X  3 (e.g. SO ]-) fragments. It seems remarkable 
that such a simple model should account quantitatively 
for bond lengths and angles in a wide variety of 
molecules. Since the theoretical curves fit the data for 
quite large deviations from T d symmetry and even 
account for the structures of SO 3 and AICI3, our 
premise leads us to regard these curves as approximate 
reaction pathways for ligand dissociation (MBD 1). 

7. Effects of crystal environments 

So far we have concentrated on the more obvious 
trends displayed by the experimental distributions but 
have paid no attention to the deviations of individual 
sample points from regression lines or correlation 
curves. Several causes (including experimental errors in 
the widest sense) can be invoked for these deviations. In 
the first place, our basic premise does not imply that 
there should be perfect correlation between the 
parameters in question. Rather, it suggests that sample 
points, representing structures in different environ- 
ments, should have, in the appropriate deformation 
space, a multivariate distribution whose second mo- 
ments about the respective means will tend to be small 
in directions of large increase of potential energy. The 
position of a particular sample point in the distribution 
will depend not only on the shape of the energy 
hypersurface but also on the perturbation produced by 
the particular environment of the structural fragment in 
question. This perturbation cannot be expected to act 
only along the direction of minimum increase of 
potential energy; it will in general also produce 
deformations perpendicular to this direction, and 
indeed, in some cases, these may be the only ones. 

Many of the M X  4 fragments considered in this 
analysis are anionic. For uniformity of description we 
classify any H atoms that may be attached to an M X  4 
fragment as protons, i.e. as belonging to the environ- 
ment of the fragment, and similarly for other covalently 
bound atoms or groups. It is clear that any large 
distortion from T a symmetry can, in principle, be 
regarded as a response to the interactions between the 
fragment in question and a particular environment 
containing cations. We can see that large distortions 
preserving C3v symmetry should occur for mono- 
protonated species or for crystal arrangements where a 
cation is much closer to one vertex of the M X  4 fragment 
than to the other three. Along the same lines, large 
distortions preserving CEv symmetry are expected for 
diprotonated species or for arrangements where cations 
approach two vertices or where they straddle an edge of 
the tetrahedron. In § 5 we mentioned that large 
distortions preserving C3v symmetry could serve to 
delineate reaction pathways for ligand dissociation, e.g. 
A1CI~ --, A1C13 + CI-, but it would be more correct 
to explicitly recognize the role of the cation and rewrite 
the reaction in question as A1CI7 + M ÷ --, A1C13 + 
MCI; and similarly for the sulphate dissociation. 

Although a detailed analysis of every given situation 
is feasible in principle (McGinnety, 1972) it would be 
tedious and complicated in practice, especially in view 
of the heterogeneity of the environments in which our 
fragments occur. 

For all practical purposes, it is virtually impossible to 
define parameter spaces that encompass the structural 
parameters of the fragment a n d  its environments. We 
therefore have to restrict ourselves to the changes in the 
structure of the fragment itself and try to map the 
deformation path in the corresponding parameter 
space. However, it is important to recognize that this 
deformation path is actually obtained by projecting 
sample points in spaces of higher dimensionality on the 
subspace of the fragment alone. In this sense, the path 
may be said to describe the response of the fragment to 
external forces. 

It is an open question how closely this deformation 
path follows a minimum-energy path in the potential- 
energy hypersurface of the isolated fragment. We 
expect a close correspondence between these paths 
when the energy valley of the isolated fragment has 
very steep sides, a less close correspondence for 
relatively shallow valleys and large external pertur- 
bations. Too little information is available to draw 
detailed conclusions. 

The only case we discuss here in any detail is that of 
LuPO 4 where the PO43- anion has crystallographic D2a 
symmetry (Lohmiiller, Schmidt, Deppisch, Gramlich & 
Scheringer, 1973). In this situation, there can be no 
deformation along the S 3, S 4 or SEt , coordinates. From 
the observed bond length and angles [1-533 A, 102.5 ° 
(twice) and 113.1 o (four times)[, we obtain D~ (A ~) .-. 0, 
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Table 3. Structural parameters for  12 PO4fragments with approximate C2v symmetry sharing one or two 0 . .  • 0 
edges with a cation 

Identification numbers are those of Baur's (1974) compilation. 

Number ( r )x  , %, a3,(corr ) (r),.2 a,2 a,2(corr) 

Cation bridging O(1) . . .  0(2)  edge 

552 1.470 A 117.6 ° 117.1 ° 1.580 A 102.3 ° 101.8 ° 
551 1.481 116.7 118.4 1.592 98.8 100.5 
572 1.489 116.6 117.3 1.611 100.9 I01.6 
554 1.492 116.6 118.0 1.570 99.5 100.9 
582 1.509 106.8 110.8 1.577 104.0 108.0 

Cation bridging 0 ( 3 ) . . .  0(4)  edge 

201 1-518 108.6 111.9 1.534 103.7 107.0 
462 1.519 110.6 112.4 1.547 104.7 106.5 
414 1.534 109.3 111.3 1.551 105.6 107.6 
881 1.534 111.1 110.5 1.538 109.1 108.5 
941 1-536 110-0 113.0 1.550 103.0 106.0 

Cations bridging both edges 

821 1.502 115.0 114.0 1.590 106.0 105.0 
1291 1.533 102.5 109.5 1.533 102.5 109.5 

DEa(E ) = --12.2 °, the largest SEa deformation among 
the 211 PO 4 fragments listed by Baur (1974), and it 
occurs with the smallest possible value of I D4I, i.e. 
zero. This structure thus represents a striking exception 
to the general rule that D 4 angular deformation vectors 
tend to be larger than those of D 2. 

In LuPO4 the phosphate group shares two opposite 
edges with Lu coordination polyhedra. The large 
negative S~(E)  distortion corresponds to a 
compression of two opposite angles. By analogy with 
LuPO 4 we might expect other bridged PO 4 fragments to 
show appreciable deformations along SEa(E ) . We have 
selected 11 such fragments with approximate CEv 
symmetry and sharing one or two edges with cations 
lying close to the approximate twofold axis. Table 3 
reveals that contributions from SEa(E ) deformations to 
&a u [see (3)] amount to as much as 7 ° in some of these 
fragments. The extra scatter produced by these 
contributions will tend to obscure some of the cor- 
relations that would be present if the total deformation 
were exclusively along S3a and S4a. Fig. 10(a) shows 
the distribution of (r) i  d against included angle a u for 
the 12 PO 4 fragments with shared edges. Fig. 10(b) is 
the distribution for the same 12 fragments with the 
DEa(E) component removed, i.e. (r)i.j = (D l + D3a)/2 
and au(corr ) = 109.47 ° -T- D4a/V/2 [compare (3)]. The 
scatter at small a u has obviously been reduced by this 
procedure. This result shows once again that any 
correlation that may be present is to be seen more 
clearly in terms of symmetry coordinates than in terms 
of internals. It also indicates how the effects of special 
environments (here, shared edges) can be accounted 
for, once they are recognized as such. 
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Fig. 10. (a) Distribution of (r)i d against a o for 12 PO 4 fragments 
(Table 3) with shared edges. (b) Same data with DEa(E ) 
contribution to % subtracted out [see (3)]. 

Of course, every environment is a special environ- 
ment. For our approach to be workable, it suffices to 
assume that the net effect of the various crystalline 
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environments encountered by our fragment is to produce 
a representative distribution of sample points over the 
low-energy regions of the appropriate hypersurface. 
Whether this assumption is valid or not is another 
matter. One could imagine, for instance, that Baur's 
(1974) list of 211 PO 4 fragments contained not one but 
a hundred examples with OLd symmetry,  in which case 
we would have come to very different conclusions 
about the relative ease of deformation along different 
symmetry coordinates. In the last resort we have no 
option but to trust that the output from our crystallo- 
graphic colleagues represents a more or less random 
selection of realizable structures. 

One of us (PM-R) is indebted to the Ciba-Geigy  
Fellowship Trust for the award of a Senior European 
Research Fellowship. 
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